14 research outputs found

    The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines

    Get PDF
    The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of 20\sim 20 kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/EL/E behaviour, and distinguishing effects arising from δCP\delta_{CP} and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least 3σ3\sigma for 50\% of the true values of δCP\delta_{CP} with a 20 kton detector. With a far detector of 70 kton, the combination allows a 3σ3\sigma sensitivity for 75\% of the true values of δCP\delta_{CP} after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within today's state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.Comment: 21 pages, 12 figure

    Performance study of a 3 x 1 x 1 m(3) dual phase liquid Argon Time Projection Chamber exposed to cosmic rays

    Get PDF
    This work would not have been possible without the support of the Swiss National Science Foundation, Switzerland; CEA and CNRS/IN2P3, France; KEK and the JSPS program, Japan; Ministerio de Ciencia e Innovacion in Spain under grants FPA2016-77347-C2, SEV-2016-0588 and MdM-2015-0509, Comunidad de Madrid, the CERCA program of the Generalitat de Catalunya and the fellowship (LCF/BQ/DI18/11660043) from "La Caixa" Foundation (ID 100010434); the Programme PNCDI III, CERN-RO, under Contract 2/2020, Romania; the U.S. Department of Energy under Grant No. DE-SC0011686. This project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement no. 654168. The authors are also grateful to the French government operated by the National Research Agency (ANR) for the LABEX Enigmass, LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Universite de Lyon for its financial support within the program "Investissements d'Avenir" (ANR-11-IDEX-0007).We report the results of the analyses of the cosmic ray data collected with a 4 tonne (3x1x1 m(3)) active mass (volume) Liquid Argon Time-Projection Chamber (TPC) operated in a dual-phase mode. We present a detailed study of the TPC's response, its main detector parameters and performance. The results are important for the understanding and further developments of the dual-phase technology, thanks to the verification of key aspects, such as the extraction of electrons from liquid to gas and their amplification through the entire one square metre readout plain, gain stability, purity and charge sharing between readout views.Swiss National Science Foundation (SNSF)French Atomic Energy CommissionCentre National de la Recherche Scientifique (CNRS)High Energy Accelerator Research Organization (KEK)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceSpanish Government FPA2016-77347-C2 SEV-2016-0588MdM-2015-0509Comunidad de MadridCERCA program of the Generalitat de CatalunyaLa Caixa Foundation LCF/BQ/DI18/11660043 100010434Programme PNCDI III, RomaniaCERN-RO, Romania 2/2020United States Department of Energy (DOE) SC0011686European Commission 654168Universite de Lyon ANR-10-LABX-0066 ANR-11-IDEX-000

    Comparação termohigrométrica de sub-altitude em área urbana e rural em São Carlos, Brasil, por meio de VANT/DRONE.

    Get PDF
    A Radiossondagem de sub-altitude tem como objetivo mensurar os dados climatológicos em vários níveis verticais da atmosfera por meio de um equipamento denominado radiossonda. Além do mais, é conhecido que os diferentes tipos de uso e ocupação do solo (urbano, industrial, rural, florestal) alteram o balanço de energia entre a superfície e a atmosfera. Dessa forma, o estudo proposto tem como objetivo analisar e comparar os valores de temperatura e umidade relativa do ar próximo a superfície (1,5m de altura) e em diferentes alturas (50m e 190m da superfície) em área urbana e rural no município de São Carlos, Brasil, no período noturno em episódios de inverno, por meio de termohigrômetros acoplados em um Veículo Aéreo Não-Tripulado (Vant/Drone) do tipo quadricóptero (quatro hélices). O voo na área urbana foi realizado no dia 13/07/2018 e na área rural no dia 26/07/2018 entre 19:30 e 20:30. Os resultados demonstraram que na área urbana em períodos noturnos a temperatura e umidade relativa do ar são maiores próxima a superfície em relação aos dados de sub-altitude. Já na área rural em períodos noturnos a temperatura do ar é menor e a umidade relativa do ar é maior próximo a superfície em comparação aos dados de sub-altitude

    Optimised sensitivity to leptonic CP violation from spectral information: the LBNO case at 2300 km baseline

    No full text
    One of the main goals of the Long Baseline Neutrino Observatory (LBNO) is to study the L/EL/E behaviour (spectral information) of the electron neutrino and antineutrino appearance probabilities, in order to determine the unknown CP-violation phase δCP\delta_{CP} and discover CP-violation in the leptonic sector. The result is based on the measurement of the appearance probabilities in a broad range of energies, covering t he 1st and 2nd oscillation maxima, at a very long baseline of 2300 km. The sensitivity of the experiment can be maximised by optimising the energy spectra of the neutrino and anti-neutrino fluxes. Such an optimisation requires exploring an extended range of parameters describing in details the geometries and properties of the primary protons, hadron target and focusing elements in the neutrino beam line. In this paper we present a numerical solution that leads to an optimised energy spectra and study its impact on the sensitivity of LBNO to discover leptonic CP violation. In the optimised flux both 1st and 2nd oscillation maxima play an important role in the CP sensitivity. The studies also show that this configuration is less sensitive to systematic errors (e.g. on the total event rates) than an experiment which mainly relies on the neutrino-antineutrino asymmetry at the 1st maximum to determine the existence of CP-violation

    Optimised sensitivity to leptonic CP violation from spectral information: the LBNO case at 2300 km baseline

    No full text
    One of the main goals of the Long Baseline Neutrino Observatory (LBNO) is to study the L/EL/E behaviour (spectral information) of the electron neutrino and antineutrino appearance probabilities, in order to determine the unknown CP-violation phase δCP\delta_{CP} and discover CP-violation in the leptonic sector. The result is based on the measurement of the appearance probabilities in a broad range of energies, covering t he 1st and 2nd oscillation maxima, at a very long baseline of 2300 km. The sensitivity of the experiment can be maximised by optimising the energy spectra of the neutrino and anti-neutrino fluxes. Such an optimisation requires exploring an extended range of parameters describing in details the geometries and properties of the primary protons, hadron target and focusing elements in the neutrino beam line. In this paper we present a numerical solution that leads to an optimised energy spectra and study its impact on the sensitivity of LBNO to discover leptonic CP violation. In the optimised flux both 1st and 2nd oscillation maxima play an important role in the CP sensitivity. The studies also show that this configuration is less sensitive to systematic errors (e.g. on the total event rates) than an experiment which mainly relies on the neutrino-antineutrino asymmetry at the 1st maximum to determine the existence of CP-violation

    Performance study of a 3×1×1 m<sup>3</sup> dual phase liquid Argon Time Projection Chamber exposed to cosmic rays

    No full text
    We report the results of the analyses of the cosmic ray data collected with a 4 tonne (3×1×1 m3) active mass (volume) Liquid Argon Time-Projection Chamber (TPC) operated in a dual-phase mode. We present a detailed study of the TPC's response, its main detector parameters and performance. The results are important for the understanding and further developments of the dual-phase technology, thanks to the verification of key aspects, such as the extraction of electrons from liquid to gas and their amplification through the entire one square metre readout plain, gain stability, purity and charge sharing between readout views

    Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC

    No full text
    The 3×1×1 m3 demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performance of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties

    Technical Design Report for large-scale neutrino detectors prototyping and phased performance assessment in view of a long-baseline oscillation experiment

    No full text
    In June 2012, an Expression of Interest for a long-baseline experiment (LBNO, CERN-SPSC-EOI-007) has been submitted to the CERN SPSC and is presently under review. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone in view of any future long baseline experiment is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the systematic errors that will be affecting their intended physics programme. Following an encouraging feedback from 108th SPSC on the technology choices, we have defined as priority the construction and operation of a 6×6×66\times 6\times 6m3^3 (active volume) double-phase liquid argon (DLAr) demonstrator, and a parallel development of the technologies necessary for large magnetised MIND detectors. The 6×6×66\times 6\times 6m3^3 DLAr is an industrial prototype of the design proposed in the EoI and scalable to 20 kton, 50~kton or more. It is to be constructed and operated in a controlled laboratory and surface environment with test beam access, such as the CERN North Area (NA). Its successful operation and full characterisation will be a fundamental milestone, likely opening the path to an underground deployment of larger detectors. The response of the DLAr demonstrator will be measured and understood with an unprecedented precision in a charged particle test beam (0.5-20 GeV/c). The exposure will certify the assumptions and calibrate the response of the detector, and allow to develop and to benchmark sophisticated reconstruction algorithms, such as those of 3-dimensional tracking, particle ID and energy flow in liquid argon. All these steps are fundamental for validating the correctness of the physics performance described in the LBNO EoI. We anticipate that a successful operation of the double-phase \six DLAr demonstrator and its campaign exposure to a charged particle beam, will provide very important and vital feedback for long baseline programmes, and in general for the field. It will represent a never-achieved milestone for LAr detectors. Its design specifically addresses and represents a concrete step towards an extrapolation of the technology to very large masses in the tens of kton range, such as the one considered and studied for several years within the EU FP7 funded LAGUNA/LAGUNA-LBNO design studies. The parameters of the demonstrator will be directly scalable and the components mass-produceable. Long drift paths will be assessed on a large scale. As requested by SPSC, we submit a Technical Design Report, in view of a realisation of the facility and an exposure to the charged particle beam before the LHC LS2.In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed 6×6×66\times 6\times 6m3^3 DLAr is an industrial prototype of the design discussed in the EoI and scalable to 20 kton or 50~kton. It is to be constructed and operated in a controlled laboratory and surface environment with test beam access, such as the CERN North Area (NA). Its successful operation and full characterisation will be a fundamental milestone, likely opening the path to an underground deployment of larger detectors. The response of the DLAr demonstrator will be measured and understood with an unprecedented precision in a charged particle test beam (0.5-20 GeV/c). The exposure will certify the assumptions and calibrate the response of the detector, and allow to develop and to benchmark sophisticated reconstruction algorithms, such as those of 3-dimensional tracking, particle ID and energy flow in liquid argon. All these steps are fundamental for validating the correctness of the physics performance described in the LBNO EoI

    LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment

    No full text
    217 pages, 164 figures, LBNO-DEMO (CERN WA105) CollaborationIn June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed 6×6×66\times 6\times 6m3^3 DLAr is an industrial prototype of the design discussed in the EoI and scalable to 20 kton or 50~kton. It is to be constructed and operated in a controlled laboratory and surface environment with test beam access, such as the CERN North Area (NA). Its successful operation and full characterisation will be a fundamental milestone, likely opening the path to an underground deployment of larger detectors. The response of the DLAr demonstrator will be measured and understood with an unprecedented precision in a charged particle test beam (0.5-20 GeV/c). The exposure will certify the assumptions and calibrate the response of the detector, and allow to develop and to benchmark sophisticated reconstruction algorithms, such as those of 3-dimensional tracking, particle ID and energy flow in liquid argon. All these steps are fundamental for validating the correctness of the physics performance described in the LBNO EoI
    corecore